The Effect of RF-Plasma Power on the Growth of III-Nitride Materials

Authors:  Samir Mustafa Hamad & Azeez Abdullah Barzinjy & Haidar Jalal Ismael & Mohammed A. Hamad

Abstract:  In this study, n-InGaN nanorods were grown directly on p-type Si (111) substrates by plasma- assisted molecular beam epitaxy (PA-MBE). The crystal structure is investigated using the reflection of high-energy electron diffraction patterns. Additionally, the morphology and optical properties of the InGaN nanorods were investigated using both scanning electron microscopy and room temperature photoluminescence spectra. The results showed that, the PL peak position shifted toward lower energy by increasing plasma power due to increase in In-concentration within InGaN nanorods. It can be observed that, through using optimum growth conditions, a uniform indium up to 34% can be achieved with no phase split-up or indium isolation. Thus, none of the mobile In-droplets on the surface were observed.

Keywords: n-type InGaN Nanorods, PA-MBE, Photoluminescence Spectra, Plasma Power
Download the PDF Document from here.

doi: 10.23918/eajse.v4i3sip66

References

Cao, L., White, J. S., Park, J.-S., Schuller, J. A., Clemens, B. M., & Brongersma, M. L. (2009). Engineering light absorption in semiconductor nanowire devices. Nature Materials, 8(8), 643-647.

Cui, K., Fathololoumi, S., Kibria, M. G., Botton, G. A., & Mi, Z. (2012). Molecular beam epitaxial growth and characterization of catalyst-free InN/InxGa1− xN core/shell nanowire heterostructures on Si (111) substrates. Nanotechnology, 23(8), 085205.

Dimakis, E., Iliopoulos, E., Tsagaraki, K., Kehagias, T., Komninou, P., & Georgakilas, A. (2005). Heteroepitaxial growth of In-face InN on GaN (0001) by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 97(11), 113520.

Doppalapudi, D., Basu, S., & Moustakas, T. (1999). Domain structure in chemically ordered In x Ga 1− x N alloys grown by molecular beam epitaxy. Journal of Applied Physics, 85(2), 883-886.

Goodman, K. D., Protasenko, V. V., Verma, J., Kosel, T. H., Xing, H. G., & Jena, D. (2011). Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy. Journal of Applied Physics, 109(8), 084336.

Hughes, W., Rowland Jr, W., Johnson, M., Fujita, S., Cook Jr, J., Schetzina, J., . . . & Edmond, J. (1995). Molecular beam epitaxy growth and properties of GaN films on GaN/SiC substrates. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 13(4), 1571-1577.

Iliopoulos, E., Adikimenakis, A., Dimakis, E., Tsagaraki, K., Konstantinidis, G., & Georgakilas, A. (2005). Active nitrogen species dependence on radiofrequency plasma source operating parameters and their role in GaN growth. Journal of Crystal Growth, 278(1), 426-430.

Jani, O., Ferguson, I., Honsberg, C., & Kurtz, S. (2007). Design and characterization of Ga N∕ In Ga N solar cells. Applied Physics Letters, 91(13), 132117.

Johnson, M., Hughes, W., Rowland, W., Cook, J., Schetzina, J., Leonard, M., . . . & Zavada, J. (1997). Growth of GaN, InGaN, and AlGaN films and quantum well structures by molecular beam epitaxy. Journal of Crystal Growth, 175, 72-78.

Jordan, D., Burns, C., & Doak, R. (2001). Corona discharge supersonic free-jet for III–V nitride growth via A 3 Σ u+ metastable nitrogen molecules. Journal of Applied Physics, 89(2), 883-892.

Keating, S., Urquhart, M., McLaughlin, D., & Pearce, J. M. (2012). Effects of substrate temperature on indium gallium nitride nanocolumn crystal growth. arXiv Preprint arXiv:1203.0645.

Kim, H.-M., Cho, Y.-H., Lee, H., Kim, S. I., Ryu, S. R., Kim, D. Y., . . . & Chung, K. S. (2004). High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Letters, 4(6), 1059-1062.

Kim, M.-H., Lee, S.-N., Park, N.-M., & Park, S.-J. (2000). Metalorganic Molecular Beam Epitaxy of GaN Thin Films on a Sapphire Substrate. Japanese Journal of Applied Physics, 39(11R), 6170.

Komaki, H., Katayama, R., Onabe, K., Ozeki, M., & Ikari, T. (2007). Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE. Journal of Crystal Growth, 305(1), 12-18.

Kushi, K., Sasamoto, H., Sugihara, D., Nakamura, S., Kikuchi, A., & Kishino, K. (1999). High speed growth of device quality GaN and InGaN by RF-MBE. Materials Science and Engineering: B, 59(1), 65-68.

Morkoç, H. (2009). Handbook of nitride semiconductors and devices, materials properties, physics and growth. Wiley.

O’Steen, M., Fedler, F., & Hauenstein, R. (1999). Effect of substrate temperature and V/III flux ratio on In incorporation for InGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 75(15), 2280-2282.

Osaka, J., Senthil Kumar, M., Toyoda, H., Ishijima, T., Sugai, H., & Mizutani, T. (2007). Role of atomic nitrogen during GaN growth by plasma-assisted molecular beam epitaxy revealed by appearance mass spectrometry. Applied Physics Letters, 90(17), 172114.

Ptak, A. J. (2001). Growth kinetics and doping of gallium nitride grown by rf-plasma assisted molecular beam epitaxy. West Virginia University.

Ristić, J., Calleja, E., Fernández-Garrido, S., Cerutti, L., Trampert, A., Jahn, U., & Ploog, K. H. (2008). On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 310(18), 4035-4045.

Shen, X.-Q., Ide, T., Shimizu, M., Hara, S., & Okumura, H. (2000). High-quality InGaN films grown on Ga-polarity GaN by plasma-assisted molecular-beam epitaxy. Japanese Journal of Applied Physics, 39(12B), L1270.

Tabata, T., Paek, J., Honda, Y., Yamaguchi, M., & Amano, H. (2012). Growth of InGaN nanowires on a (111) Si substrate by RF‐MBE. Physica Status Solidi (c), 9(3‐4), 646-649.

Tourbot, G., Bougerol, C., Glas, F., Zagonel, L. F., Mahfoud, Z., Meuret, S., . . . Daudin, B. (2012). Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology, 23(13), 135703.

Vaudo, R., Cook Jr, J., & Schetzina, J. (1994). Atomic nitrogen production in a molecular‐beam epitaxy compatible electron cyclotron resonance plasma source. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 12(2), 1232-1235.